

第9章 宽带压控增益模块

杭州艾研信息技术有限公司 2014年11月

申明

杭州艾研信息技术有限公司保留随时对其产品进行修正、改进和完善的权利,同时也保留在不作任何通告的情况下,终止其任何一款产品的供应的权利。用户在下订单前应及时获取相关信息的最新版本,并验证这些信息是当前的和完整的。

可通过如下方式获取最新信息、技术资料和技术支持:

技术支持电话: 0571-86134572

技术支持邮箱: support@hpati.com

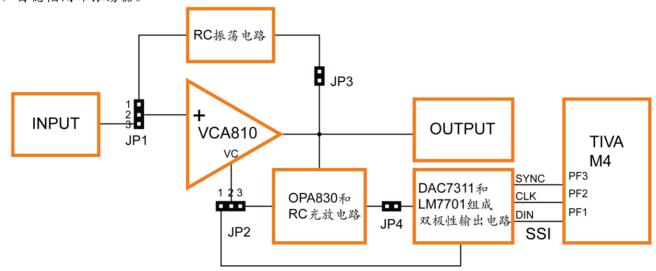
产品&资料下载中心: http://www.hpati.com/products/

互动论坛: http://www.hpati.com/bbs/forum.php

公司地址: 浙江省杭州市西湖区留和路16号新峰商务楼B402

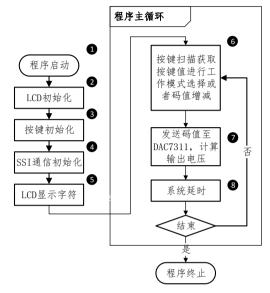
更多资讯请添加艾研信息官方微信(搜索公众号:艾研)或扫一扫下方二维码:

第9章 宽带压控增益模块


1

高速压控增益模块介绍

实验简介


本本模块采用一片高增益可调节范围宽带压控放大器VCA810组成高速压控增益电路。其中,VCA810的增益控制是通过调节控制输入端VC的电压来实现的。不同的控制电压,就可以得到不同的增益值,从而获得不同增益的输出值。该控制电压可以直接从DAC双极性输出电路中得到,并可通过液晶模块的滚轮调节大小。另外通过跳冒的选择,可以提供多种实验电路: 1、宽带压控增益放大与衰减; 2、正反馈RC振荡器;3、自稳幅闭环振荡器。

实验程序使用按键 S3 选择当前程序工作在实验 B,实验 C 还是实验 D,这三个实验程序上唯一的区别是:在程序刚运行时三个实验的 DAC7311 的初始值不同,其实部分都是一致的;使用按键 S1 和 S2 完成 VC 端电压值的调节,同时改变 DAC7311 的工作值,在液晶上同步显示当前 VC 端电压值;通过 SSI 传输协议改变 DAC7311 的工作值;

- 1 程序成功烧写后, TIVA LaunchPad上电后可启动程序运行。
- LCD初始化包括LCD端口使能、SSI通信协议配置、 LCD配置初始化、LCD清屏4个步骤。每个步骤详情请见本书第三章。
- 接键初始化,配置S1(PC7), S2(PD6), S3(PD7)输入模式。 注意: PD7口默认锁定功能为NMI,使用GPIO功能时需要解锁定。
 - SSI初始化,完成与DAC7311之间通信的所有信号线的配置,PF2配置成时钟信号线,PF3配置成帧信号端,PF1配置成数据发送线。SSI初始化步骤: 1、使能SSI外设模块。 2、配置相关GP10复用功能为SSI模块功能并为SSI模块通信使用。 3、SSI通信模式、时钟频率设置和数据位设置。 4、使能SSI。
- 在LCD上初始显示ssi:xxxx,表示DAC7311当前码值,ve:xxxxmV,表示电路vc端的当前电压值,便于实验过程中观察实验数据变化。
- 按键扫描,按下S1对DAC7311当前码值增加一个步进值,按下S2对DAC7311当前码值减少一个步进值,按下S3进行三种工作模式(LAB1,LAB2,LAB3)之间的切换,并显示在LCD上。

- 通过SSI发送码值至DAC7311,并通过相应的电压 转换公式计算电路vc端的电压值,显示在LCD上, 电压值范围(-3.3V—3.3V)。
- 为防止LCD过快重复刷新,系统进行延时将主循环 控制在一个合理的执行速度内。

图 xx 程序流程图

LCD 显示部分程序可参考本书第三章。

按键功能

4

实验程序需要使用 LCD 开发板上的所有按键: S1、S2、S3。程序使用按键扫描完成端口状态的读取,在按键的初始化配置中需要注意的是 S3 的配置,因为 S3 连接在端口 PD7,而 PD7 口已经被锁定为 NMI(non-maskable interrupt,不可屏蔽中断)功能,所以在使用该端口时需要先解除锁定,使其能够配置成 GPIO 功能。解除锁定代码如下:

```
//解锁
HWREG(GPIO_PORTD_BASE+GPIO_O_LOCK) |= GPIO_LOCK_KEY;
HWREG(GPIO_PORTD_BASE+GPIO_O_CR) |= (1<<7);
HWREG(GPIO_PORTD_BASE+GPIO_O_DEN) &=(~(1<<7));
HWREG(GPIO_PORTD_BASE+GPIO_O_PDR) &= (~(1<<7));
```



```
HWREG(GPIO_PORTD_BASE+GPIO_O_PUR) &= (~(1<<7));
HWREG(GPIO_PORTD_BASE+GPIO_O_AFSEL) &=(~(1<<7));</pre>
```

完成解锁后 PD7 口就可以跟 PC7, PD6 一样配置初始化使用。

按键使用端口的初始化程序代码如下:

```
* @brief 对端口C、D进行按键初始化
* @param none
* @return none
         PC7 | <--Button1
* TIVA
         PD6|<--Button2
         PD7 | <--Button3
* 注: PD7口默认锁定功能为NMI,使用其GPIO功能时需要解锁定再配置成GPIO功能
******************
void Init Key()
   //解锁
   HWREG (GPIO PORTD BASE+GPIO O LOCK) |= GPIO LOCK KEY;
   HWREG(GPIO_PORTD_BASE+GPIO_O_CR) |= (1<<7);</pre>
   HWREG (GPIO PORTD BASE+GPIO O DEN) &= (\sim (1<<7));
   HWREG (GPIO PORTD BASE+GPIO O PDR) &= (~(1<<7));
   HWREG (GPIO PORTD BASE+GPIO O PUR) &= (\sim (1 << 7));
   HWREG (GPIO PORTD BASE+GPIO O AFSEL) &= (\sim (1<<7));
   //初始化外设GPIO
  ROM SysCtlPeripheralEnable (SYSCTL PERIPH GPIOC);
   ROM SysCtlPeripheralEnable (SYSCTL PERIPH GPIOD);
   // 设置PD为2MA, 若上拉输出
   ROM GPIOPadConfigSet (GPIO PORTC BASE, GPIO PIN 7,
                     GPIO STRENGTH 2MA, GPIO PIN TYPE STD WPU);
   ROM GPIOPadConfigSet (GPIO PORTD BASE, GPIO PIN 6,
                     GPIO STRENGTH 2MA, GPIO PIN TYPE STD WPU);
```


按键扫描程序直接使用 ROM_GPIOPinRead()进行读取按键所在端口的状态值,三个按键对应不同的功能: S3 选择实验项目, S1 增大 DAC7311 工作值使 VC 端电压增大, S2 减小 DAC7311 工作值使 VC 端电压减小。程序扫描三个端口即 PC7: S1 按键端口; PD6: S2 按键端口: PD7: S3 按键端口。

按键扫描程序代码如下:

```
/********************
  @brief 按键扫描函数
  @param none
  @return 0x00
                    没有键按下
                    按下PC7,S1
        0x01
         0x02
                   按下PD6,S2
                    按下PD7,S3
         0 \times 03
        PC7 | <--Button1
  TIVA PD6 | <-- Button2
         PD7 | <--Button3
* /
unsigned char scan key (void)
  if (ROM GPIOPinRead(GPIO PORTC BASE, GPIO PIN 7) == 0x00)
```



```
{
   // 延时约10ms, 消除按键抖动
   ROM SysCtlDelay(10*(ROM SysCtlClockGet() / 3000)); KEY抬起
   while (ROM GPIOPinRead (GPIO PORTC BASE, GPIO PIN 7) == 0 \times 00);
   // 延时约10ms, 消除松键抖动
   ROM SysCtlDelay(10*(ROM SysCtlClockGet() / 3000));
   return 0x01;
}ROM GPIOPinRead(GPIO PORTD BASE, GPIO PIN 6) == 0x00)
{约10ms,消除按键抖动
    ROM SysCtlDelay(10*(ROM SysCtlClockGet() / 3000));
   // 等待KEY抬起
   while (ROM GPIOPinRead (GPIO PORTD BASE, GPIO PIN 6) == 0 \times 00);
   // 延时约10ms, 消除松键抖动
   ROM SysCtlDelay(10*(ROM SysCtlClockGet() / 3000));
   return 0x02;
}
if (ROM GPIOPinRead(GPIO PORTD BASE, GPIO PIN 7) == 0 \times 00)
{
   // 延时约10ms, 消除按键抖动
   ROM SysCtlDelay(10*(ROM SysCtlClockGet() / 3000));
   // 等待KEY抬起
   while (ROM GPIOPinRead(GPIO PORTD BASE, GPIO PIN 7) == 0x00);
   // 延时约10ms,消除松键抖动
   ROM SysCtlDelay(10*(ROM SysCtlClockGet() / 3000));
   return 0x03;
}
return 0;
```

按键扫描函数的返回值表示实验中按下了不同按键,根据该值就可以完成工作模式转换或者是 VC 端电压的增减。按键响应程序代码如下:

```
key_val = scan_key(); //键扫描
if(key_val)
{
    switch(key_val)
    {
        //按下S1(按键1),增加
```



```
case 0x01:
     //.....
     break;
   //按下S2 (按键2),减小
  case 0x02:
     //.....
     break;
  //按下s3(按键3),工作模式的切换(实验之间的切换)
   //切换工作模式主要改变的是dac7311工作的默认码值(VC端)
   //开始工作的电压。
  case 0x03:
     switch(Key3 PressCount)
        //工作模式1: 带宽压控增益放大与衰减
        case 1:
           //.....
           break;
        //工作模式2: 正反馈RC震荡器
        case 2:
           //.....
           break;
        //工作模式3: 自稳幅闭环振荡器
        case 3:
           //.....
           break;
        default:
           break;
        }
        Key3 PressCount++;
        if(Key3 PressCount > 3)
           Key3 PressCount = 1;
        }
     default: break;
  }
}
```


SSI通信功能

DAC7311 与 Tiva M4 之间通过 SSI(SPI)通信完成。DAC7311 是 12-bit 的 DAC, 其内部有一个 16-bit 的寄存器。寄存器格式如下:

Bit	B15	B14	B13	B12	B11	B10	В9	В8	В7	B6	B5	B4	В3	B2	B1	В0
Data	PD1	PD2	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	X	X

寄存器低两位为无效位,B2~B13 为数据位,高两位 B14 (PD2),B15 (PD1) 为控制选择位表示 DAC7311 不同的工作模式:一种正常工作模式,三种 power-down 工作模式。在实验程序只使用正常工作模式,这两位都配置为 0。

DAC7311 由 SYNC, SCLK, DIN 三线控制。SYNC 为信号选择线, 相当于 Tiva M4 的 SSIFss 信号线。SCLK 为时钟信号线, 相当于 Tiva M4 的 SSIClk 信号线。DIN 为数据线, 相当于 Tiva M4 的 SSITx 信号线。SSI (SPI) 通信程序设置如下:

DAC7311 寄存器的低两位无效, 所以在 SSI 通信程序实现中需要将发送的数据左移两位, 然后再通过 SSI 进行传输。程序代码实现如下:

```
/*********************
* @brief 发送数据到dac7311
* @param val 取值范围0~4095
 @return 0 参数不正确:
       1 传输成功:
************************
unsigned char ssi send 2 dac7311 (unsigned long val)
{
                         //判断参数正确与否
  if(val > 4095) return 0;
                         //左移两位, DAC7311内部寄存器低两位无
  val = val << 2;</pre>
效
  ROM SSIDataPut(SSI1 BASE, val); //发送数据
  while(ROM_SSIBusy(SSI1 BASE)); //等待发送完成
  return 1;
```

实验程序需要在 LCD 上显示当前 VC 端的电压值, VC 端的电压可以通过 DAC7311 的输出电压换算得到。

DAC7311 的输出电压计算公式:

$$V_{out} = V_{DD} \times \frac{D}{2^n}$$

式中 V_{out} 是 DAC7311 的输出电压, V_{DD} 是 DAC7311 的输入电压,D是 Tiva M4 通过 SSI 传输给 DAC7311 的工作值, $D \in [0,4095]$,n是 DAC7311 的 DA 位数,该值为 12。

电路中 V_{DD} = 3.3V ,故 DAC7311 的输出电压为 $0 \sim 3.3V$,该电压通过 LMP7701 构成的双极性输出电路将电压值转换为 $-3.3V \sim 3.3V$,即为 VC 端的电压。在程序设计中不涉及负值的处理,故可以将 $-3.3V \sim 3.3V$ 在程序中提升为 $0 \sim 6.6V$ 。程序中可以通过如下方式计算出 VC 端的电压。

$$\Delta V = 2 \times V_{DD} \times \frac{D}{2^n}$$
 $\Delta V \in [0, 6.6V]$

故 VC 端电压为:

$$VC = \begin{cases} 3.3 - \Delta V & 0 \le \Delta V \le 3.3 \\ \Delta V - 3.3 & 3.3 < \Delta V \le 6.6 \end{cases}$$

程序中扩大 1000 倍计算,显示成 mV 档。程序代码如下:

```
//计算vc端的电压值
VC_Value = (dac7311_val*3300*2) / 4096;
//根据3300(中间值,进行正负显示处理)
int show_val;
if(VC_Value > 3300)
{
    show_val = VC_Value - 3300;
}
else
{
    show_val = 3300 - VC_Value;
}
```

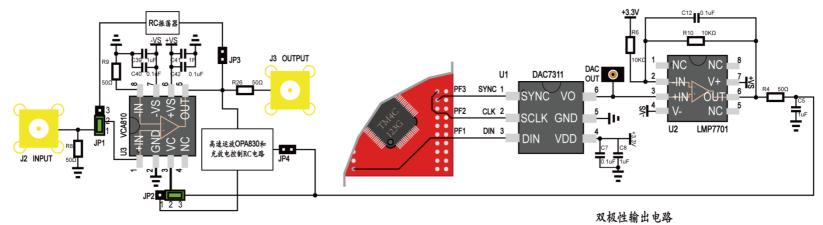
程序代码中的 VC_Value 即为计算公式中的 ΔV ,show_val 计算得出的都是正值,而根据程序数据跟 VC 端真实电压的对应关系可知当 VC_Value<3300(ΔV < 3.3)时 VC 端电压为负值,LCD 上显示负值;VC_Value>3300(ΔV > 3.3)时 VC 端电压为正值 LCD 上显示正值。程序代码如下:

```
for(i = 0; i < 4; ++i)
{
   if(VC_Value < 3300)</pre>
```

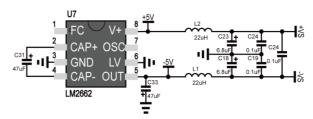

不同的实验 VC 端以及 DAC7311 具有各自的初始默认值, VC 端的电压是通过 DAC7311 工作值计算获得。默认值在按键响应程序中设置。

A 宽带压控增益放大和衰减

该实验初始默认值 VC 端电压需要为负压,保持在-1.13V。根据计算公式换算,在程序实现中保持 DAC7311 的工作值为 1350,计算得出的 VC 端的电压为-1.125V。


B 正反馈 RC 振荡器

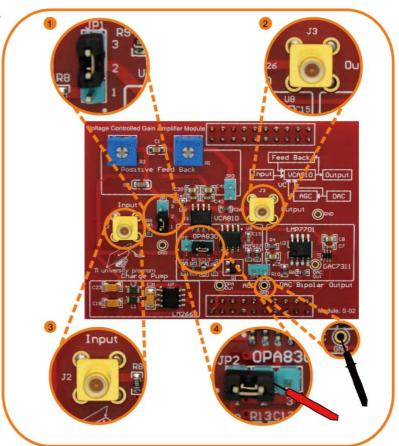
该实验初始默认值为 0 即可,此时 DAC7311 的工作值为 2048。


C自稳幅闭环振荡器

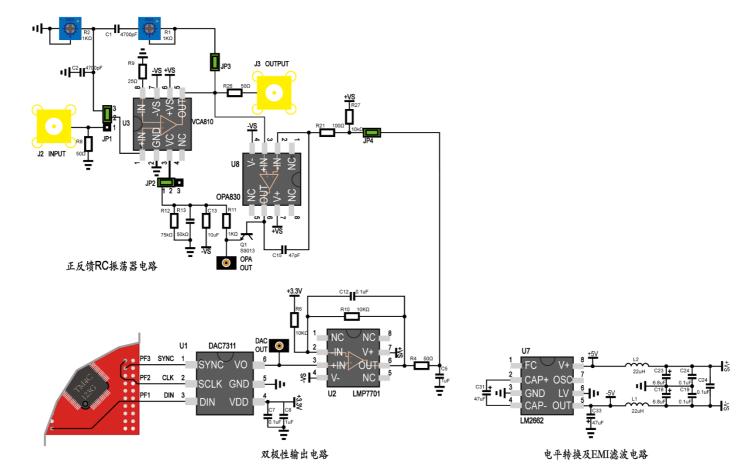
该实验初始默认值 VC 端电压需要为正压,保持在 1.17V。根据计算公式换算,在程序实现中保持 DAC7311 的工作值为 2775,计算得出 VC 端电压为 1.171V。

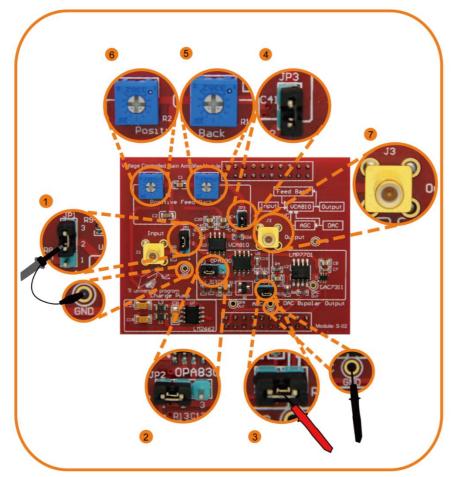
压控增益放大电路

电平转换及EMI滤波电路

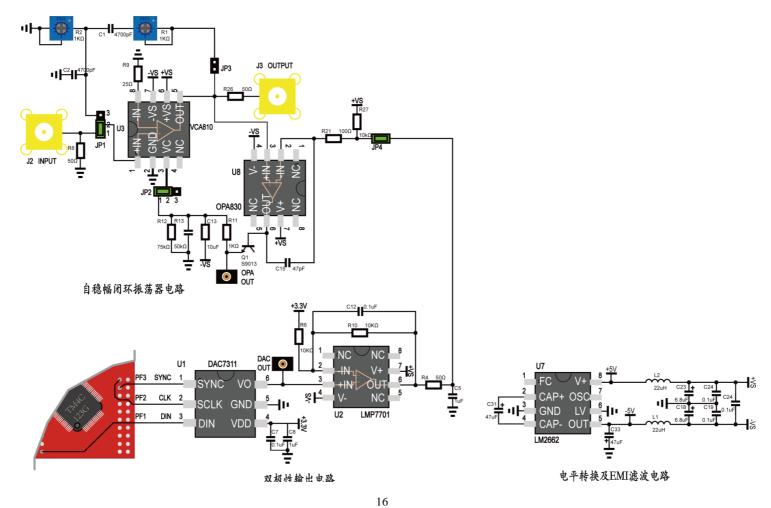


宽带压控增益放大与衰减实验


- 1、理解原理图以后编写Launchpad代码,代码可参考网上资源。然后烧写代码。
- 2、在母板上TIVA、液晶、高速压控增益模块 连接完成,准备实验。
- 3、在高速压控增益模块上完成带宽压控增益 放大与衰减实验的跳线连接,如图所示,短 接图 1 JP1的1.2、以及JP2的2.3。
- 4、用实验套件里的两根高频连接线分别接在图 3 的J2和图 2 的J3上, 其中J2连接到信号发生器, J3连接到示波器上。再万用表的红表笔接在跳线帽图 4 JP2上, 黑表笔接地, 用于测量VC的电压值大小。
- 5、用信号发生器产生一个信号例如(10MHz 0.05Vpp),打开TIVA开关,通过液晶模块上的S1和S2按钮来调节VC的电压值(注意VC值要小于0),同时观察示波器上的输出信号,并记录,再计算增益与VC值的关系,查看增益线性度。
- 6、改变输入信号的幅值,例如(10MHz 2.5Vpp)重复步骤4、查看增益的线性度。
- 7、保持VC的值固定,例如(VC=-1.13V),保持输入信号的幅值,例如(Vin=1.5Vpp),改变输入信号的频率,测试增益,查看增益频率特性。

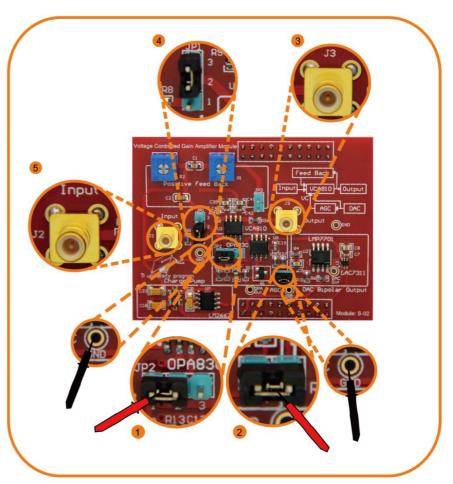

连接仪表及跳线时断开电源。

正反馈RC振荡器实验


- 1、理解原理图以后编写Launchpad代码,代码可参考网上资源。然后烧写代码。
- 2、在母板上TIVA、液晶、高速压控增益模块连接完成、准备实验。
- 3、在模块上完成正反馈RC振荡器的跳线连接,如图中的 1.2.3.4 所示,短接 JP1的2.3、JP2的1.2,JP3以及JP4。
- 4、如图中 1 所示,用示波器测量RC振荡器产生的频率。如图中 3 所示,用万用表测量幅度控制电压的大小。如图中 7 所示,用高频连接线连接J3至示波器,观察输出
- 5、打开TIVA开关,通过调节滑动变阻器R1和R2的值来改变RC振荡器的输出频率。(注意同角度的调节滑变),再通过示波器可观察振荡器输出波形。
- 6、保持RC振荡器的输出频率不变,通过液晶模块上的S1.S2按钮来改变幅度控制电压的大小(JP4)。并测量输出幅度,查看振荡器幅度控制的线性度。
- 7、保持幅度控制电压大小不变,变化振荡 频率,测试输出幅度,查看稳幅振荡情况。

注意

连接仪表及跳线时断开电源。


自稳幅闭环振荡器实验

- 1、理解原理图以后编写Launchpad代码,代码可参考网上资源。然后烧写代码。
- 2、在母板上TIVA、液晶、高速压控增益模块连接完成,准备实验。
- 3、在模块上完成自稳幅闭环振荡器的跳线 连接,如图中的 1.2.4 所示,短接JP1 的1.2、JP2的1.2、以及JP4。
- 4、用两根高频连接线分别接在图 5 的J2和图 3 J3上,其中J2连接到信号发生器,J3 连接到示波器上。
- 5、打开TIVA开关,用液晶模块上的S1.S2 按钮来调节幅度控制电压的大小 (JP4),测量方式如图中的 2。保持其电压为1.17V左右。
- 6、用信号发生器产生一个频率固定的输入信号,例如(100KHz),再改变输入信号的幅度,测试AGC的幅度稳定能力。(需测量输出端的电压值和VC的电压值)
- 7、使幅度控制电压为0.033V左右(JP4)。 重复实验步骤5。
- 8、变化输入信号频率,测试AGC的幅度稳定能力。

注意

连接仪表及跳线时断开电源。

